5/7x-8=-8+3x

Simple and best practice solution for 5/7x-8=-8+3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/7x-8=-8+3x equation:



5/7x-8=-8+3x
We move all terms to the left:
5/7x-8-(-8+3x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
5/7x-(3x-8)-8=0
We get rid of parentheses
5/7x-3x+8-8=0
We multiply all the terms by the denominator
-3x*7x+8*7x-8*7x+5=0
Wy multiply elements
-21x^2+56x-56x+5=0
We add all the numbers together, and all the variables
-21x^2+5=0
a = -21; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-21)·5
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*-21}=\frac{0-2\sqrt{105}}{-42} =-\frac{2\sqrt{105}}{-42} =-\frac{\sqrt{105}}{-21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*-21}=\frac{0+2\sqrt{105}}{-42} =\frac{2\sqrt{105}}{-42} =\frac{\sqrt{105}}{-21} $

See similar equations:

| 5+4x=2x-3 | | x+22=2x+20 | | 5x+2=2-7x | | -8m(2m+9)=0 | | x-7=-19-x | | 19-7z=82 | | -5/7x-4+4x=179/7 | | 6m+6=-16 | | -2x+1+x=5 | | F(x)=1/3x+1 | | x/11=-36 | | 3x+5=17/4 | | 7x+123=3x+5 | | 8-x+7x=2 | | 31+x=75 | | x*14=28 | | 2(x+4)=9x-41 | | 8+h*10=1 | | 5(x)=-12x2+5x | | 7x-11+142=180 | | 9u+33=-3(u+1) | | 2x*x-30=0 | | -7(y+6)=-3y-26 | | 5a+6-2a=4a-8 | | 8=8082x-1 | | 1/x+1√2=650 | | 5m=-124 | | 2y-6=-6(y-1) | | 5m=-225 | | 3x–7=-13 | | 5(6m-10)=-10 | | 005x+2=10004x−1 |

Equations solver categories