5/8g+8=1/6g+1

Simple and best practice solution for 5/8g+8=1/6g+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/8g+8=1/6g+1 equation:



5/8g+8=1/6g+1
We move all terms to the left:
5/8g+8-(1/6g+1)=0
Domain of the equation: 8g!=0
g!=0/8
g!=0
g∈R
Domain of the equation: 6g+1)!=0
g∈R
We get rid of parentheses
5/8g-1/6g-1+8=0
We calculate fractions
30g/48g^2+(-8g)/48g^2-1+8=0
We add all the numbers together, and all the variables
30g/48g^2+(-8g)/48g^2+7=0
We multiply all the terms by the denominator
30g+(-8g)+7*48g^2=0
Wy multiply elements
336g^2+30g+(-8g)=0
We get rid of parentheses
336g^2+30g-8g=0
We add all the numbers together, and all the variables
336g^2+22g=0
a = 336; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·336·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*336}=\frac{-44}{672} =-11/168 $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*336}=\frac{0}{672} =0 $

See similar equations:

| 64=-12x-(3x-4) | | 10x+2348=2x-9873 | | 7x-2=2(x+4) | | y=2(3)+10 | | 104=k3 | | 0.11x+0.3(x-2)=0.01(4x-3) | | 2.25c=27,12,13,14 | | .13x+x=100 | | 14v+8=-1-6v+3v | | 0-15y=-12 | | 13x-28=11 | | 0.2(10000)-0.05y=005(y+10000) | | -5/3x+2/3-2/5x+1=0 | | 4.5x=18,3,4,5 | | 4(x+3)-7=35 | | 3(6x+6=13 | | 4w+5+36=180 | | -5/3x+1/3x+1=0 | | 3x31=128 | | 2x-10=50x= | | 42(1+x)=x+9 | | d-8.4=8.6,15,16,17 | | 0=6w7+27w6+27w5 | | x+1+3x-25=180 | | 3x-25+x+1=180 | | b-9.7=13.3,23,24,25 | | 7(2x-3)-6x=-5 | | 2n*4=-16 | | x+24=2x+6 | | Y=50(1.25)x | | 2a+3=37-4a | | 2x+9+x+46=180 |

Equations solver categories