If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/8k-4/3=-9-2/5k
We move all terms to the left:
5/8k-4/3-(-9-2/5k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
5/8k-(-2/5k-9)-4/3=0
We get rid of parentheses
5/8k+2/5k+9-4/3=0
We calculate fractions
(-800k^2)/360k^2+225k/360k^2+144k/360k^2+9=0
We multiply all the terms by the denominator
(-800k^2)+225k+144k+9*360k^2=0
We add all the numbers together, and all the variables
(-800k^2)+369k+9*360k^2=0
Wy multiply elements
(-800k^2)+3240k^2+369k=0
We get rid of parentheses
-800k^2+3240k^2+369k=0
We add all the numbers together, and all the variables
2440k^2+369k=0
a = 2440; b = 369; c = 0;
Δ = b2-4ac
Δ = 3692-4·2440·0
Δ = 136161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{136161}=369$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(369)-369}{2*2440}=\frac{-738}{4880} =-369/2440 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(369)+369}{2*2440}=\frac{0}{4880} =0 $
| 1/3x+1/6x=26 | | 2/15-1/2(3x+2)=0 | | 8x+4=4(2x+) | | E=1/2m4.2^2 | | 2(2y-5)=3(5-2y) | | v×v+5v+4=0 | | 6v×6v+12v=0 | | 6=-2(15-x) | | 4=1/2m355^2 | | 5x-2.2=62.5 | | 4.2=1/242v^2 | | 3x+(-2)=8x2x | | 5x^2+80=40x | | x+24/9=9/x | | 4.2=1/268v^2 | | 4.2=1/2m2000^2 | | Y=x-9/4 | | 4.2=1/2m20002 | | (z+6)^(3/4)=2 | | 5x+(-6)=18 | | 6x-18=x+7-10 | | Y=x/6+1/4 | | -2/3(x-2)=1/9(x+2) | | -13y=145 | | 19=3-7y | | 1+3x=15x+28 | | 4(y+3)=-20 | | 2x+1=5×-44 | | 3/5z=3/8z+7/20 | | 1/x+1+1=x+2 | | 4.2=1/2m2 | | 0a-0=0a |