5/8x+4x=3/8x+12

Simple and best practice solution for 5/8x+4x=3/8x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/8x+4x=3/8x+12 equation:



5/8x+4x=3/8x+12
We move all terms to the left:
5/8x+4x-(3/8x+12)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 8x+12)!=0
x∈R
We add all the numbers together, and all the variables
4x+5/8x-(3/8x+12)=0
We get rid of parentheses
4x+5/8x-3/8x-12=0
We multiply all the terms by the denominator
4x*8x-12*8x+5-3=0
We add all the numbers together, and all the variables
4x*8x-12*8x+2=0
Wy multiply elements
32x^2-96x+2=0
a = 32; b = -96; c = +2;
Δ = b2-4ac
Δ = -962-4·32·2
Δ = 8960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8960}=\sqrt{256*35}=\sqrt{256}*\sqrt{35}=16\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{35}}{2*32}=\frac{96-16\sqrt{35}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{35}}{2*32}=\frac{96+16\sqrt{35}}{64} $

See similar equations:

| 2(3x-5)+3(2x+6)=44 | | 1,2x+3=0 | | -3+4x=5x+15 | | 3x+7/2x+3=2 | | 3k/2=2/3 | | 4(3-7x)=-2 | | 5(5x-6)-4x+8=41 | | 4q/5=8 | | 3(3x+5)=38 | | 12x^2+3x+27=0 | | x(0.15)=1250 | | Z²=-8i | | 9n+12=90 | | 1.50+x=12.50x | | 130000-110x/130+2x=0 | | 7x^{2}-12x-9=0 | | x^2-9x=-88 | | -5x-14-3x=-42+5x-63 | | 6x+6+2x=24-8x+110 | | 8x-17-2x=17+4x-12 | | 145-14x=343-20x | | 1/2+1/4-1/10x=1/5 | | -6x+4=-24-4x | | 21s+12-6s=15s+6-8 | | -3x-18=4x-116 | | 3x-11=-9x+145 | | 7x+14=5x+26 | | 4y/3+7/2=15/3 | | 18x-6=-7x-56 | | (37-y)=13 | | 4x-8=5/13 | | -6x=-21-3x |

Equations solver categories