5/9g+7=1/6g+1

Simple and best practice solution for 5/9g+7=1/6g+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/9g+7=1/6g+1 equation:



5/9g+7=1/6g+1
We move all terms to the left:
5/9g+7-(1/6g+1)=0
Domain of the equation: 9g!=0
g!=0/9
g!=0
g∈R
Domain of the equation: 6g+1)!=0
g∈R
We get rid of parentheses
5/9g-1/6g-1+7=0
We calculate fractions
30g/54g^2+(-9g)/54g^2-1+7=0
We add all the numbers together, and all the variables
30g/54g^2+(-9g)/54g^2+6=0
We multiply all the terms by the denominator
30g+(-9g)+6*54g^2=0
Wy multiply elements
324g^2+30g+(-9g)=0
We get rid of parentheses
324g^2+30g-9g=0
We add all the numbers together, and all the variables
324g^2+21g=0
a = 324; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·324·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*324}=\frac{-42}{648} =-7/108 $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*324}=\frac{0}{648} =0 $

See similar equations:

| y-11y=4 | | 7m-8m=-12 | | 100+3f=150+2.5f | | 2^3x-2=6^5x+4 | | 10+v/9=9 | | 156-8x=184-12x | | 6x³+5x+30=0 | | 3(5x+6)-3(2x+4)=12 | | 7(x+2)=-2(5x-4)+x | | 7(x+2)=-2(5x-4)+x | | -13+x-½=40 | | -13+x-½=40 | | 4/8=8/n | | 4/8=8/n | | -8u+4(u+2)=32 | | 17x-6x+8x=9x+50 | | 9(-5/3)=x | | 7/2d.D=4 | | R=205x3 | | Y=4x+10x-6 | | Y=4x+10x-6 | | Y=4x+10x-6 | | 5x+18=2x+3x+18 | | 19x-4+2x=14x-5 | | Y=-25x+800 | | u/7-1.2=-18.7 | | u/7-1.2=-18.7 | | –2(j+11)+8=2 | | (2x+1)2=16 | | X+x(.12)=7000 | | 6^x=7773 | | 4-8x2+6x=2x(x+3)+2x |

Equations solver categories