If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/9k-2/9=-3+3/5k
We move all terms to the left:
5/9k-2/9-(-3+3/5k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
5/9k-(3/5k-3)-2/9=0
We get rid of parentheses
5/9k-3/5k+3-2/9=0
We calculate fractions
25k/3645k^2+(-2187k)/3645k^2+(-10k)/3645k^2+3=0
We multiply all the terms by the denominator
25k+(-2187k)+(-10k)+3*3645k^2=0
Wy multiply elements
10935k^2+25k+(-2187k)+(-10k)=0
We get rid of parentheses
10935k^2+25k-2187k-10k=0
We add all the numbers together, and all the variables
10935k^2-2172k=0
a = 10935; b = -2172; c = 0;
Δ = b2-4ac
Δ = -21722-4·10935·0
Δ = 4717584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4717584}=2172$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2172)-2172}{2*10935}=\frac{0}{21870} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2172)+2172}{2*10935}=\frac{4344}{21870} =724/3645 $
| x2=64/169 | | x-5x=750 | | x=10+0.28/1.28 | | 1/3(-12k+39)=3+11k | | y=1.28(10+0.28/1.28)-7.77 | | 7a-(4a-8a+3)+2a=10a | | 4a=34-6 | | 1.28x-7.77=-3.53+8.84 | | (x)+(x+10)+(x+50)=180 | | 2d+3.2=8.8 | | 2(2x)2+1=-3 | | 1=3y−2 | | x+3(x)+6(x)=180 | | y=3(2-4) | | 3x+6-12=4x+4 | | 5n-5=n10 | | 10+14=5y-10 | | 1/5x+1/3=-2 | | 6b=20+2b | | 5+4(x+8)=37-6(3x+11) | | 4(x-3)=-2(6-2x | | 2c+4.4=8.6 | | 54y-17=13.8 | | y=3(14-4) | | 5x-6=4x+4. | | 3x+7+4x=9 | | $3.00=0.55b | | 5y+y+34=6y+40-3y | | 1-5v=8v+7 | | 8y+3=6y+4 | | X^2+x-111222=0 | | X^2+x-1122=0 |