5/9q+7=4-2/3q

Simple and best practice solution for 5/9q+7=4-2/3q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/9q+7=4-2/3q equation:



5/9q+7=4-2/3q
We move all terms to the left:
5/9q+7-(4-2/3q)=0
Domain of the equation: 9q!=0
q!=0/9
q!=0
q∈R
Domain of the equation: 3q)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
5/9q-(-2/3q+4)+7=0
We get rid of parentheses
5/9q+2/3q-4+7=0
We calculate fractions
15q/27q^2+18q/27q^2-4+7=0
We add all the numbers together, and all the variables
15q/27q^2+18q/27q^2+3=0
We multiply all the terms by the denominator
15q+18q+3*27q^2=0
We add all the numbers together, and all the variables
33q+3*27q^2=0
Wy multiply elements
81q^2+33q=0
a = 81; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·81·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*81}=\frac{-66}{162} =-11/27 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*81}=\frac{0}{162} =0 $

See similar equations:

| (2x+15)x=180 | | 2a-2a+4a-2a=20 | | 1/2x+5/4=3+7/6x | | 1/2x+5/4=3+7/6 | | -x+13=2 | | x=x*20/100+1000 | | 2x+4=1/2+x | | -12v=-10 | | -2x-5(-4x+4)=-128 | | 1/2(x+7)-1=6 | | 3+3n=n=18 | | 52=w/5 | | 5x÷(x^2+9)=0 | | 4(x+0.1)=1.8 | | 4y-5=20+15 | | 36x=24√2 | | (5÷x^2)-(10÷x)+2=0 | | k2+5=41 | | 2x+4=-3x-7 | | 5x-2=2-3x | | -7x-12+9x+17=6 | | x-2.5=15 | | 8y+5=5y5+2 | | 1/12(4x-3)=1/4(2x+1) | | 720=(x+10)+150+90+x+x+x | | 1.88+7n=9.5-4n | | 2-7=13-8p | | (16+x)8=184 | | 31+6x=-7(2-3x) | | 4x2−16x+12=0 | | Y+2x-10=180 | | -4-x+3=-5(x+1)+12 |

Equations solver categories