5/9x-14=7/18x-16

Simple and best practice solution for 5/9x-14=7/18x-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/9x-14=7/18x-16 equation:



5/9x-14=7/18x-16
We move all terms to the left:
5/9x-14-(7/18x-16)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 18x-16)!=0
x∈R
We get rid of parentheses
5/9x-7/18x+16-14=0
We calculate fractions
90x/162x^2+(-63x)/162x^2+16-14=0
We add all the numbers together, and all the variables
90x/162x^2+(-63x)/162x^2+2=0
We multiply all the terms by the denominator
90x+(-63x)+2*162x^2=0
Wy multiply elements
324x^2+90x+(-63x)=0
We get rid of parentheses
324x^2+90x-63x=0
We add all the numbers together, and all the variables
324x^2+27x=0
a = 324; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·324·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*324}=\frac{-54}{648} =-1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*324}=\frac{0}{648} =0 $

See similar equations:

| (17-x)^2+144=x^2+25 | | -5c=-7c+10 | | v=4/3x3.14x4^3 | | 64a-10(49+28a)=-256-94a | | 11/16=2w+3/16 | | -36+x=14 | | 25=x-6.5 | | 2x+(60-2x)+15=75 | | (8x)+(7x-4)+116=180 | | x=204x+10* | | 3x+10=230 | | z=-10 | | 91=183-u | | 245=-y+37 | | 45+7w=16w | | 6x-4+3x=7x+x14 | | 9m+7=8mm= | | 3w+81/4=9 | | 9a-20.7=0 | | 2x-13=5+16x | | 20.5=w/3.600*703 | | 70=y10 | | 4500000=x*0.96^7 | | -2v+8=-4v+2 | | 8c-1=32 | | 12-3=6d | | -7y+6=-22 | | 5a+11=16 | | 23=m-26 | | x-(0.3x)=140000 | | 1/4(4a+6)=-3a-9+a | | 11x=705 |

Equations solver categories