If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50/2t+4=2t+4/2
We move all terms to the left:
50/2t+4-(2t+4/2)=0
Domain of the equation: 2t!=0We add all the numbers together, and all the variables
t!=0/2
t!=0
t∈R
50/2t-(2t+2)+4=0
We get rid of parentheses
50/2t-2t-2+4=0
We multiply all the terms by the denominator
-2t*2t-2*2t+4*2t+50=0
Wy multiply elements
-4t^2-4t+8t+50=0
We add all the numbers together, and all the variables
-4t^2+4t+50=0
a = -4; b = 4; c = +50;
Δ = b2-4ac
Δ = 42-4·(-4)·50
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{51}}{2*-4}=\frac{-4-4\sqrt{51}}{-8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{51}}{2*-4}=\frac{-4+4\sqrt{51}}{-8} $
| 3.5x=5*14 | | (4x-3)/(3)-(2x+5)/(2)=-(19)/(6) | | n/10+0.1=-0.74 | | -8p+3=2 | | (80*0.40)^3/(40*1.6)^2*(128)^4=(2)^x | | y+5х=90 | | 5a+21=17 | | .25/x=3 | | 30+2y-11=11y-11-3y | | 1/2x*(2x+2)=110 | | 2/3+3x/4=31/6 | | 5x+3-11=3x+4-2 | | -3+x/8=-3 | | 63x=16x^2-20 | | 3(m-5)+4=3m-7 | | -10=2h+16 | | 24+5+5a=8-7 | | P(x)=-x^2+14x+58 | | =9x2+48x+64 | | C=9x2+48x+64 | | m31-9=3 | | |2w+7|=17 | | 45+45+4x+18=180 | | 3d-(d+4=-2 | | 1=v+14/10 | | m+31=9 | | -3(4t-4)+9t=5t-5 | | 14b-2=9 | | x-1/5x=84 | | 5(x+1)^2)=90 | | 3(2n+2)=8(6n+1)+4 | | 14w=-56 |