If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=5a^2
We move all terms to the left:
50-(5a^2)=0
a = -5; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-5)·50
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{10}}{2*-5}=\frac{0-10\sqrt{10}}{-10} =-\frac{10\sqrt{10}}{-10} =-\frac{\sqrt{10}}{-1} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{10}}{2*-5}=\frac{0+10\sqrt{10}}{-10} =\frac{10\sqrt{10}}{-10} =\frac{\sqrt{10}}{-1} $
| 13x=29=5x-51 | | 8d-6d-1=11 | | x7+24=24 | | -6(8-7x)=228 | | 36(-0.29)-6b+6=0 | | 7-20/x=9 | | 8k+3k-3k-6=18 | | -95=-5(2n+5) | | 25-4r=37 | | j+6j-5j=16 | | 144+x=-12(x+5) | | 3x+0.1=xx | | 2/15x=1/15x+5 | | 11x-4=105 | | 3x+5=12x+25 | | 11x-4=138 | | (2/15)x=(1/15)x+5 | | 126=-7(6+3k) | | 8a-7=9 | | -2(1-8r)=-115 | | 6x-3-1118x=2 | | 11x-4=93 | | 4a−a=15 | | 7m+2m+m+3m-11m=6 | | 0.8+n=14 | | 15x+x=x+10 | | 11x-4=94 | | 3x=6x6 | | -17g+g+16g+2g=-14 | | j—10/7=8 | | -331x+6=7 | | 12/x+5=8 |