50=t(7,5+t)

Simple and best practice solution for 50=t(7,5+t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=t(7,5+t) equation:



50=t(7.5+t)
We move all terms to the left:
50-(t(7.5+t))=0
We add all the numbers together, and all the variables
-(t(t+7.5))+50=0
We calculate terms in parentheses: -(t(t+7.5)), so:
t(t+7.5)
We multiply parentheses
t^2+7.5t
Back to the equation:
-(t^2+7.5t)
We get rid of parentheses
-t^2-7.5t+50=0
We add all the numbers together, and all the variables
-1t^2-7.5t+50=0
a = -1; b = -7.5; c = +50;
Δ = b2-4ac
Δ = -7.52-4·(-1)·50
Δ = 256.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7.5)-\sqrt{256.25}}{2*-1}=\frac{7.5-\sqrt{256.25}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7.5)+\sqrt{256.25}}{2*-1}=\frac{7.5+\sqrt{256.25}}{-2} $

See similar equations:

| (3x-9)(2x-5)=0 | | x^2/√5−1=√5+1 | | 7+3(1x+4)=10 | | 4(p+1)=2(p-7) | | 10w+19+3w=6(9+w)-14 | | 2.3(x-17)=4.2(x+1.3 | | 2x2+6x-95=0 | | 3x+7(2x-9)=12 | | 39-(2c+4)=2(c=5)=c | | 9(d+3)=4(d-7)+5 | | -4+6(-4x+3)=34 | | -(5.6x-2.2)=3x+4.7-3.6x | | -6(2x+8)=-8-7x | | -5x+10=-8 | | x^2+8x+60=0 | | -7k+12=-9 | | 3/8x+1/5x=46 | | 3(2c+4)=13 | | x+5/2=3/4 | | -0.5x+6=3.5x-12 | | (-1+5i)(-2-3i)=0 | | x=10+15/9 | | Y=5p^2-9p+4 | | 2|25x|=100 | | -7y-1=34 | | 2/3x=12-1/3x | | -4+8(8a+7)=-13-a | | 4x-2+5x-3+10x-20=180 | | (7x-3)/5=8 | | 7z-1=3+6z | | 2m=1/9=12-7m/6 | | -7Y-3=5y+15 |

Equations solver categories