If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=z2
We move all terms to the left:
50-(z2)=0
We add all the numbers together, and all the variables
-1z^2+50=0
a = -1; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-1)·50
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*-1}=\frac{0-10\sqrt{2}}{-2} =-\frac{10\sqrt{2}}{-2} =-\frac{5\sqrt{2}}{-1} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*-1}=\frac{0+10\sqrt{2}}{-2} =\frac{10\sqrt{2}}{-2} =\frac{5\sqrt{2}}{-1} $
| 2(2-1)+4n=2(3n-1 | | 4x+109=8x-11 | | 50=z(z) | | 3154.34523+23634.24x/83^8=835x-3758.1254 | | 1-b=10-10b | | 8(3v+3)=192 | | -6-2c=-8c | | 4y-39=7(y-3) | | -b+8=-3b-8 | | -2/5+y=1/4 | | -17=-3m=7 | | -17=3(v+6)-8v | | -7y=-9y-10 | | y+17=7y-85 | | -6t=3-7t | | -f=4+3f | | 6v=10+5v | | 25x+7=15x+3 | | 0.5n+1.9=2.5 | | 10w-16=w+65 | | 14=-2e | | x³+2x²-36x-72=0 | | 20+7=19+x | | 3-6-6j=16-7j | | P(x)=8x^3+7x^2-2x+ | | 3−6−6j=16−7j | | 3n07=6n-2n | | 4x-19=3x+6 | | -35=-5(7n-5)+3(3n+68 | | 8x-4-3x+11=32 | | -4(5x+4)-x-1=-146 | | -6(-4y+3)-8y=6(y-4)-2 |