If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+147x-588=0
a = 50; b = 147; c = -588;
Δ = b2-4ac
Δ = 1472-4·50·(-588)
Δ = 139209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{139209}=\sqrt{49*2841}=\sqrt{49}*\sqrt{2841}=7\sqrt{2841}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(147)-7\sqrt{2841}}{2*50}=\frac{-147-7\sqrt{2841}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(147)+7\sqrt{2841}}{2*50}=\frac{-147+7\sqrt{2841}}{100} $
| g-3.7=2.9 | | -4x-25=6x | | 5/6t=2 | | 5x-10=6x-21 | | (2x-6)+(x+12)=60 | | (5x-10)+(4x+12)=360 | | 7+3a-4=6a-5a | | 3x^2+3x-90/x^2-7x+10=0 | | 0.25x+0.1(x-3)=0.05(22) | | x²+100x-120000=0 | | 2/9b+1/3b=4/9-1/3 | | 2/6=8/7n | | 1-x=0.95 | | 2+(5x+3)=20 | | 4(x+5)=2(x-10)-16 | | -144(3.14)=-12(3.14)k | | 8-2(x-7)=0 | | (3x+1)=74 | | 4^(x+2)=8^(2x) | | 45.5+20x=485 | | 45.5+20x=4885 | | 8x-1=9x^2 | | t=16t-4t^2 | | 7.5x=950 | | 2x^2=8x+6 | | 3/2x+5x=950 | | 3/2x+5x=$950 | | 5x+(3/2)x=950 | | q/5=2/7 | | u/2=2.6 | | d-4=2.2 | | .2u+4=5u+1-7u |