If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-100=0
a = 50; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·50·(-100)
Δ = 20000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20000}=\sqrt{10000*2}=\sqrt{10000}*\sqrt{2}=100\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{2}}{2*50}=\frac{0-100\sqrt{2}}{100} =-\frac{100\sqrt{2}}{100} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{2}}{2*50}=\frac{0+100\sqrt{2}}{100} =\frac{100\sqrt{2}}{100} =\sqrt{2} $
| 2x^2-13x=171 | | 7-p=8-4p | | 40-5(2m-2)=5m+22-m | | 100=39.26+.25x | | y=12=8 | | p+6=11p | | 5(-2m+1)=15 | | p+6=4p+4 | | 7x=12x+20=20x-35=180 | | 0.4*(2x+0.3)=1/3*(6x–7.2) | | 56+5x+13+x=180 | | 3x+2(5-2x)=2 | | 5x=(7x-8) | | w^2+8w-128=0 | | 54.00+9x=38+13x | | 4^(3x-1)=15 | | 500=0.75n+140 | | 3x-67x+10=0 | | 30=x+3x | | 7z/6-10=18 | | 3b+40=-5 | | 4n-26=41+n | | 32y+32=64 | | -2.5x+2.2x=17.61 | | 4n-3/5=8 | | 4p+8=5p-7 | | -3(4p+5)-2(3+-14p)=3(8+5p) | | 3/5x+4/5=9/10 | | (2x+3)/4=6 | | 4a^2-4=-3 | | x/(x=2)=5 | | -3(4p+5)-2(3-14p)=3(8+5p) |