If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-25x-12=0
a = 50; b = -25; c = -12;
Δ = b2-4ac
Δ = -252-4·50·(-12)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-55}{2*50}=\frac{-30}{100} =-3/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+55}{2*50}=\frac{80}{100} =4/5 $
| -7u+2(u+2)=-26 | | y=-9(-10)-100 | | y=2+7(1) | | y=15-8(4) | | y=8(6)-10 | | 9n+8+6n=-1+6 | | 6d-7=-2+d | | w-2=198 | | 2-w=198 | | -6b-9=7-4b | | -10+8m=7m | | 5/21p+5=1/4p | | 44+2(a+10)=180 | | 3x/4=10/50 | | 2/9y+1/2y=1/9y+8/7 | | -8m+6=-9m | | x+1^2=49 | | 9= 1/2(5x+6) | | -4g=-3g-9 | | 520/x=40 | | -8y=-9y+9 | | 6j=7j-6 | | 6=6= 34(10x+16)43 (10x+16) | | 4-4x4+8=-4 | | 2d=-7+d | | 18-j=19 | | (5x+4)°+(3x-7)+49°=180° | | 9x^2+0.8x-0.12=0 | | k+6k-3k=20 | | 19m+-12m+5=-2 | | x-100=80 | | 3x=x=250 |