If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-4050=0
a = 50; b = 0; c = -4050;
Δ = b2-4ac
Δ = 02-4·50·(-4050)
Δ = 810000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{810000}=900$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-900}{2*50}=\frac{-900}{100} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+900}{2*50}=\frac{900}{100} =9 $
| 9/11x=3/4 | | x+(2x)+(3x+6)=180 | | X2+5=x+15 | | 1.6x-1.6=6.4 | | 6v+8=-4v | | 33-18=3(x-6) | | 12c-6c=6 | | 2x+3+3x-23=180 | | -21y^2+7y=0 | | -1867=6(17n-6 | | 23+3y-6=13y-13-4y | | 8=-2/3x+9 | | X-3/5=8/x+3 | | 35x+56*982=89286 | | 3x^2=31 | | 6x2−7x−5=0 | | 11x+13=28-7x | | 1/7x+9=22 | | -3x+32-7x=-2{5x+10} | | 11x+13=28+7x | | 20x-2=-12 | | 3{x-14}+1=-4x+5 | | 2x=+15-43-5x | | 4x^2−4x−11=−8 | | 43+x+11=2×-8 | | x-3/10=1/5 | | 6s-4s=14 | | 6(2x-6)=100 | | 48+x+11=2×-8 | | 1/7x+5=18 | | -14+-8=x+3 | | 10(4x-4)=80 |