If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-60x=0
a = 50; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·50·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*50}=\frac{0}{100} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*50}=\frac{120}{100} =1+1/5 $
| x×3÷4=9÷11 | | x+7/5=-1,8 | | X×x^2=64 | | 2w=3w-9 | | -30+2y=9 | | 2d+5=5d-19 | | 1/3x+4=x-3 | | 86-r=15 | | 3s^2+12s-15=0 | | 2w+4=3w | | 2w=3w+2 | | 3(9-y)=5(y-9 | | 4^x+4.2^x-5=0 | | Y=12+-3x | | 2w+2=3w | | P+p+1÷3=6p | | 4^x+4.2^x=5 | | 7y+45=12y-65 | | 0,3(u+1)+6u=4,9+4u | | 3=x-8/4 | | 15-8x=8x=11-7x | | 4/t-2-8/t^2-2t=-2t | | U^2+4u+2=0 | | 7-3x=2x+-5x | | x2+x2=64 | | 4d-100=d-20 | | 155x=195x+3150 | | -30=q-1+11q | | x²+43x+44= | | 2x+3.2(-0.2)=6.4 | | x+7/5=1,8 | | 12y-96+20y=4y-1(40) |