51-(2c+3)=4(c+5)c

Simple and best practice solution for 51-(2c+3)=4(c+5)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 51-(2c+3)=4(c+5)c equation:



51-(2c+3)=4(c+5)c
We move all terms to the left:
51-(2c+3)-(4(c+5)c)=0
We get rid of parentheses
-2c-(4(c+5)c)-3+51=0
We calculate terms in parentheses: -(4(c+5)c), so:
4(c+5)c
We multiply parentheses
4c^2+20c
Back to the equation:
-(4c^2+20c)
We add all the numbers together, and all the variables
-2c-(4c^2+20c)+48=0
We get rid of parentheses
-4c^2-2c-20c+48=0
We add all the numbers together, and all the variables
-4c^2-22c+48=0
a = -4; b = -22; c = +48;
Δ = b2-4ac
Δ = -222-4·(-4)·48
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{313}}{2*-4}=\frac{22-2\sqrt{313}}{-8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{313}}{2*-4}=\frac{22+2\sqrt{313}}{-8} $

See similar equations:

| -6(6x-1)=-17 | | 52+6y=64y | | (9a-2/7)=10 | | m/5-11=-18 | | x+8-9=8*3 | | 2n+3=4n-11 | | 7x+16-9x=18-8x+16x-2 | | 7x-5=2x-3+5x-3 | | (3.14-1)d=1088 | | -18=-6v-3v | | 3x-7=8* | | 12x-(-x+4)=10 | | 9a-2/7/7=10 | | 2(x-9=3(x-5 | | 150=12x+30+50 | | 4x-13+2x=37=180 | | 3a-4+6a+2+a=5a+22 | | -15+x/5=-27 | | 10y-8=(5y-4) | | -3x+22=-17 | | -17=-4x-1-4x | | 7x+-3=1+6x+2 | | 1-2x-9=79 | | 2x-5x-6=-18 | | 4+4+4+z+4=+ | | 29-(2c+4)=(c+5)+c | | -4(6x+1)+43=-3(4x+3) | | -31=4(6n+7)-5(n+8) | | 2x-3x=-x+5 | | 9+v/5=3 | | 7x+(x-(2))=22 | | 4(5-5n)=80 |

Equations solver categories