If it's not what You are looking for type in the equation solver your own equation and let us solve it.
528=(3x+12)(2x+10)
We move all terms to the left:
528-((3x+12)(2x+10))=0
We multiply parentheses ..
-((+6x^2+30x+24x+120))+528=0
We calculate terms in parentheses: -((+6x^2+30x+24x+120)), so:We get rid of parentheses
(+6x^2+30x+24x+120)
We get rid of parentheses
6x^2+30x+24x+120
We add all the numbers together, and all the variables
6x^2+54x+120
Back to the equation:
-(6x^2+54x+120)
-6x^2-54x-120+528=0
We add all the numbers together, and all the variables
-6x^2-54x+408=0
a = -6; b = -54; c = +408;
Δ = b2-4ac
Δ = -542-4·(-6)·408
Δ = 12708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12708}=\sqrt{36*353}=\sqrt{36}*\sqrt{353}=6\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{353}}{2*-6}=\frac{54-6\sqrt{353}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{353}}{2*-6}=\frac{54+6\sqrt{353}}{-12} $
| X*3x=108 | | 81^x=27 | | 3(2x-4)=8x+9-9x | | -2(3y-6)-y=-4(y-4) | | 10r^2=25r | | 17=20-j | | 169=(x+8)(x+6) | | 2x²+11x+12=0 | | 28g^2+14g=0 | | 20=17-j | | -11x=1132 | | 5v/11=29 | | 3x-5x+2=x-2+4 | | 1.6(4+x)=1.333 | | -21x+25=18 | | .3t=t-154 | | w=1/3*27 | | 12–4n=4 | | 4v/2+v+6/15v-18=0 | | 0.01+x=9.09 | | 5x•18=4x+1•20 | | 2w+10=w+11 | | 3^(1-7x)=2^x | | 2x=-10+12x | | 9+4x+7-8x=-2(x-8) | | z+223=409 | | 86-3x=7x-20 | | 409+223=z | | 409-223=z | | 10+x2=19 | | z-409=223 | | x^2+14x-203=0 |