53.3(.5-x)(.5-x)=(2x)(2x)

Simple and best practice solution for 53.3(.5-x)(.5-x)=(2x)(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 53.3(.5-x)(.5-x)=(2x)(2x) equation:


Simplifying
53.3(0.5 + -1x)(0.5 + -1x) = (2x)(2x)

Multiply (0.5 + -1x) * (0.5 + -1x)
53.3(0.5(0.5 + -1x) + -1x * (0.5 + -1x)) = (2x)(2x)
53.3((0.5 * 0.5 + -1x * 0.5) + -1x * (0.5 + -1x)) = (2x)(2x)
53.3((0.25 + -0.5x) + -1x * (0.5 + -1x)) = (2x)(2x)
53.3(0.25 + -0.5x + (0.5 * -1x + -1x * -1x)) = (2x)(2x)
53.3(0.25 + -0.5x + (-0.5x + 1x2)) = (2x)(2x)

Combine like terms: -0.5x + -0.5x = -1x
53.3(0.25 + -1x + 1x2) = (2x)(2x)
(0.25 * 53.3 + -1x * 53.3 + 1x2 * 53.3) = (2x)(2x)
(13.325 + -53.3x + 53.3x2) = (2x)(2x)

Remove parenthesis around (2x)
13.325 + -53.3x + 53.3x2 = 2x(2x)

Remove parenthesis around (2x)
13.325 + -53.3x + 53.3x2 = 2x * 2x

Reorder the terms for easier multiplication:
13.325 + -53.3x + 53.3x2 = 2 * 2x * x

Multiply 2 * 2
13.325 + -53.3x + 53.3x2 = 4x * x

Multiply x * x
13.325 + -53.3x + 53.3x2 = 4x2

Solving
13.325 + -53.3x + 53.3x2 = 4x2

Solving for variable 'x'.

Combine like terms: 53.3x2 + -4x2 = 49.3x2
13.325 + -53.3x + 49.3x2 = 4x2 + -4x2

Combine like terms: 4x2 + -4x2 = 0
13.325 + -53.3x + 49.3x2 = 0

Begin completing the square.  Divide all terms by
49.3 the coefficient of the squared term: 

Divide each side by '49.3'.
0.2702839757 + -1.081135903x + x2 = 0

Move the constant term to the right:

Add '-0.2702839757' to each side of the equation.
0.2702839757 + -1.081135903x + -0.2702839757 + x2 = 0 + -0.2702839757

Reorder the terms:
0.2702839757 + -0.2702839757 + -1.081135903x + x2 = 0 + -0.2702839757

Combine like terms: 0.2702839757 + -0.2702839757 = 0.0000000000
0.0000000000 + -1.081135903x + x2 = 0 + -0.2702839757
-1.081135903x + x2 = 0 + -0.2702839757

Combine like terms: 0 + -0.2702839757 = -0.2702839757
-1.081135903x + x2 = -0.2702839757

The x term is -1.081135903x.  Take half its coefficient (-0.5405679515).
Square it (0.2922137102) and add it to both sides.

Add '0.2922137102' to each side of the equation.
-1.081135903x + 0.2922137102 + x2 = -0.2702839757 + 0.2922137102

Reorder the terms:
0.2922137102 + -1.081135903x + x2 = -0.2702839757 + 0.2922137102

Combine like terms: -0.2702839757 + 0.2922137102 = 0.0219297345
0.2922137102 + -1.081135903x + x2 = 0.0219297345

Factor a perfect square on the left side:
(x + -0.5405679515)(x + -0.5405679515) = 0.0219297345

Calculate the square root of the right side: 0.148086915

Break this problem into two subproblems by setting 
(x + -0.5405679515) equal to 0.148086915 and -0.148086915.

Subproblem 1

x + -0.5405679515 = 0.148086915 Simplifying x + -0.5405679515 = 0.148086915 Reorder the terms: -0.5405679515 + x = 0.148086915 Solving -0.5405679515 + x = 0.148086915 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.5405679515' to each side of the equation. -0.5405679515 + 0.5405679515 + x = 0.148086915 + 0.5405679515 Combine like terms: -0.5405679515 + 0.5405679515 = 0.0000000000 0.0000000000 + x = 0.148086915 + 0.5405679515 x = 0.148086915 + 0.5405679515 Combine like terms: 0.148086915 + 0.5405679515 = 0.6886548665 x = 0.6886548665 Simplifying x = 0.6886548665

Subproblem 2

x + -0.5405679515 = -0.148086915 Simplifying x + -0.5405679515 = -0.148086915 Reorder the terms: -0.5405679515 + x = -0.148086915 Solving -0.5405679515 + x = -0.148086915 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.5405679515' to each side of the equation. -0.5405679515 + 0.5405679515 + x = -0.148086915 + 0.5405679515 Combine like terms: -0.5405679515 + 0.5405679515 = 0.0000000000 0.0000000000 + x = -0.148086915 + 0.5405679515 x = -0.148086915 + 0.5405679515 Combine like terms: -0.148086915 + 0.5405679515 = 0.3924810365 x = 0.3924810365 Simplifying x = 0.3924810365

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.6886548665, 0.3924810365}

See similar equations:

| 0.33333333333333x-11=2 | | T-3a=9 | | 13e-6-10e+4= | | 4x+24=3x+12 | | m/7=7/4 | | 73+(x-11)+x=180 | | n÷3/4=12 | | 60/1x1/5 | | 6x+-6=15x+15 | | 4/3•3.14•6•6•6 | | 5=x-6x | | 15/[9^2/(8-5)-(-7)] | | 2.5x=70 | | Y=4-8*1 | | 100z^2-120z+36=0 | | Y=4-8*0 | | 3v-12=25 | | Y=4-8*-1 | | 15[9^2/(8-5)-(-7)] | | Y=-1/2-5 | | Y=4-8*-2 | | 5x-76=0 | | 7x+11+4x+47=180 | | Y=4-8*-3 | | 6m+3=-6-10m+9m | | 0=6x^2-8x-8 | | 1x+1=x+1 | | 1x+-1=x+1 | | 5x+10=250 | | 4.9=6.7-0.6x | | t^2-42t-200=0 | | 4x+260=400 |

Equations solver categories