5323=x(0,73x+440)

Simple and best practice solution for 5323=x(0,73x+440) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5323=x(0,73x+440) equation:



5323=x(0.73x+440)
We move all terms to the left:
5323-(x(0.73x+440))=0
We calculate terms in parentheses: -(x(0.73x+440)), so:
x(0.73x+440)
We multiply parentheses
0x^2+440x
We add all the numbers together, and all the variables
x^2+440x
Back to the equation:
-(x^2+440x)
We get rid of parentheses
-x^2-440x+5323=0
We add all the numbers together, and all the variables
-1x^2-440x+5323=0
a = -1; b = -440; c = +5323;
Δ = b2-4ac
Δ = -4402-4·(-1)·5323
Δ = 214892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{214892}=\sqrt{4*53723}=\sqrt{4}*\sqrt{53723}=2\sqrt{53723}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-440)-2\sqrt{53723}}{2*-1}=\frac{440-2\sqrt{53723}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-440)+2\sqrt{53723}}{2*-1}=\frac{440+2\sqrt{53723}}{-2} $

See similar equations:

| (-3x-12)-(-7-x)=-3x-12-7+x | | 7/2x-1=7/3 | | 3-5a=10 | | 5l+7=7-2l | | 5(6x+7)=10 | | 7 | | 11+4x=7x-13x= | | 3^2x=48 | | x÷4x=36 | | 5x7=-13 | | y/5+99=114 | | 8x-6+2x=13+5x+ | | 3x–7=8x-7 | | x+5=10x/5-10/5 | | 7m-3m=4m | | 5x–4=2x+4 | | 40x-15=15(6x) | | x4+-2x3+-5x2+10x+-5=0 | | A=2p+3p | | 4-5x=2-7x | | 5x=6+19 | | 2p-4=8-2p | | (x+4)*(3x-5)=0 | | 4c−=28 | | T=7v | | 2x*10,000=0 | | 2x*10,000=x | | Y+25=10x | | 2x+13=17-x | | 3x+11/2=7 | | 5(2z-1)=4(3z+4) | | 125u=5 |

Equations solver categories