If it's not what You are looking for type in the equation solver your own equation and let us solve it.
534=s2
We move all terms to the left:
534-(s2)=0
We add all the numbers together, and all the variables
-1s^2+534=0
a = -1; b = 0; c = +534;
Δ = b2-4ac
Δ = 02-4·(-1)·534
Δ = 2136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2136}=\sqrt{4*534}=\sqrt{4}*\sqrt{534}=2\sqrt{534}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{534}}{2*-1}=\frac{0-2\sqrt{534}}{-2} =-\frac{2\sqrt{534}}{-2} =-\frac{\sqrt{534}}{-1} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{534}}{2*-1}=\frac{0+2\sqrt{534}}{-2} =\frac{2\sqrt{534}}{-2} =\frac{\sqrt{534}}{-1} $
| 12(2+y)=5(2y+8) | | 7u7u7u7u7u7u7u-8u=24u | | 6u=7u-4 | | 2x/3=(x+14)/5 | | 2x(5)=3x+42 | | 5+y+24=-36 | | 356=s2 | | 240=x*5640 | | x+19=-3x+51 | | 3(y-6)2=48 | | (x+7)=(3x-29) | | 4(x+6)-2(x+8)=40 | | 3y-20=2y+30 | | 4.25n=3.5n+36 | | s=33^2+636 | | x³-7x²+11x-5=0 | | 4b+5=1+5b4b+5=1+5b4 | | 4x+3=2+7 | | -2(3-1)+3(j+4)=4 | | (t+3)=2(t+5)=34 | | 1210=s2 | | 7-3x=-4x=13 | | 1,210=s2 | | 14/40=x/20 | | 8x2+15x-27=0 | | 20-2x=-15 | | X=t+1 | | 1/2(5x)=20 | | 1/3x+2/5=1/5 | | 4x+1+5x+1=54 | | 6^(6x-4)=46 | | 252-x=77 |