540=(40+2x)(60+x)+x

Simple and best practice solution for 540=(40+2x)(60+x)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 540=(40+2x)(60+x)+x equation:



540=(40+2x)(60+x)+x
We move all terms to the left:
540-((40+2x)(60+x)+x)=0
We add all the numbers together, and all the variables
-((2x+40)(x+60)+x)+540=0
We multiply parentheses ..
-((+2x^2+120x+40x+2400)+x)+540=0
We calculate terms in parentheses: -((+2x^2+120x+40x+2400)+x), so:
(+2x^2+120x+40x+2400)+x
We get rid of parentheses
2x^2+120x+40x+x+2400
We add all the numbers together, and all the variables
2x^2+161x+2400
Back to the equation:
-(2x^2+161x+2400)
We get rid of parentheses
-2x^2-161x-2400+540=0
We add all the numbers together, and all the variables
-2x^2-161x-1860=0
a = -2; b = -161; c = -1860;
Δ = b2-4ac
Δ = -1612-4·(-2)·(-1860)
Δ = 11041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-161)-\sqrt{11041}}{2*-2}=\frac{161-\sqrt{11041}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-161)+\sqrt{11041}}{2*-2}=\frac{161+\sqrt{11041}}{-4} $

See similar equations:

| 8x+6-7x=6 | | 80-8x=-48 | | y+34.9=72.6 | | -12-v-3=-14 | | 10-x/4=11 | | x+2(x-2)/3=5x-2/3 | | 8x-29x-45=25 | | -2-x+6=4 | | -5x+8x=24 | | 3x+9x-10=-4x | | 14+n/6=2 | | 78-10x=98 | | x-47=781 | | k-(-10)=29 | | k-(-10=29 | | 5(4x-8)+46=2(10x+3) | | 9x+12x=13 | | 250.5=35m=300-45.25m | | 10.3=5x-2.2 | | x+x*0.4=30 | | 3+w/3.75=6 | | 4x-2/3=17 | | 3x-67=80 | | 40/16=45/2x+4 | | 8^5x+9=128 | | 0=-x^2-4x-1 | | -2.3=w/4+4.1 | | -2.3=(w/4)+4.1 | | –2x+7=-13 | | X^2-10x+13=8 | | 66=6(x+8) | | 10=6x+22 |

Equations solver categories