If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54=4x+5x(x+x)+12+2x
We move all terms to the left:
54-(4x+5x(x+x)+12+2x)=0
We add all the numbers together, and all the variables
-(4x+5x(+2x)+12+2x)+54=0
We calculate terms in parentheses: -(4x+5x(+2x)+12+2x), so:We get rid of parentheses
4x+5x(+2x)+12+2x
determiningTheFunctionDomain 4x+5x(+2x)+2x+12
We add all the numbers together, and all the variables
6x+5x(+2x)+12
We multiply parentheses
10x^2+6x+12
Back to the equation:
-(10x^2+6x+12)
-10x^2-6x-12+54=0
We add all the numbers together, and all the variables
-10x^2-6x+42=0
a = -10; b = -6; c = +42;
Δ = b2-4ac
Δ = -62-4·(-10)·42
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{429}}{2*-10}=\frac{6-2\sqrt{429}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{429}}{2*-10}=\frac{6+2\sqrt{429}}{-20} $
| 9/4=y-2/9 | | -2x^2-10=-4x | | -5/y+4=14 | | 6.5=1.1+1.8rr= | | 8=6x-2 | | 14=10+(p)/(4) | | 3(c-1)+2(3c+10=-1(3c+1) | | 18x-25+61=90 | | 4(7x+1)=2(10x+16)+20 | | -28.3=-3.3+b/0 | | s^2+2.5s+0.5=0 | | 7x=10=-4-23 | | 2x-18=246 | | 2(2x^2-25x)+2(3x^2+60)=180 | | 3(-7)2x=7 | | 3(-7)-2y=7 | | 4x500=880 | | -9+a=1@ | | 42+3g=72 | | 9=15+8x | | 5+2xN=20 | | 39=13+2g | | 5x+5(x-3)=25 | | -2e-12=14 | | -8x-15=-4x+13 | | x+6(x-1)=2 | | (2x+5)+51+90=180 | | 4x+2/3=11/6 | | (2x-5)+62+x=180 | | 7x-8-2x=-3 | | 55+s=110s+ | | -9x+5x+15=23 |