550-(2/p)=5p

Simple and best practice solution for 550-(2/p)=5p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 550-(2/p)=5p equation:



550-(2/p)=5p
We move all terms to the left:
550-(2/p)-(5p)=0
Domain of the equation: p)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
-(+2/p)-5p+550=0
We add all the numbers together, and all the variables
-5p-(+2/p)+550=0
We get rid of parentheses
-5p-2/p+550=0
We multiply all the terms by the denominator
-5p*p+550*p-2=0
We add all the numbers together, and all the variables
550p-5p*p-2=0
Wy multiply elements
-5p^2+550p-2=0
a = -5; b = 550; c = -2;
Δ = b2-4ac
Δ = 5502-4·(-5)·(-2)
Δ = 302460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{302460}=\sqrt{20164*15}=\sqrt{20164}*\sqrt{15}=142\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(550)-142\sqrt{15}}{2*-5}=\frac{-550-142\sqrt{15}}{-10} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(550)+142\sqrt{15}}{2*-5}=\frac{-550+142\sqrt{15}}{-10} $

See similar equations:

| 9+5x=2x-18 | | 555-(p/2)=5p | | n=(7000*32*46)/(4*14) | | n=7000*32*46/4*14 | | 2y-12/4=25 | | 4n/32-4n/46=14 | | 4n/32-4n/46*7000=184000 | | 0.8^x=0.15 | | 4n/32-4n/46*7000=4(46-32)/(32*46) | | 4x+15+3×+35=180 | | -3+-x=12 | | 4/y+12/y=4 | | x+4/7+x+5/4=2 | | X=(x/2)+(3x/8)+9 | | 18=2x=24 | | -7(1+5n)-3n=107 | | -m^2+5m=5 | | -6(2k+1)=-90 | | 0.7t=0.1= | | 4(5-4x)=100 | | 4(1+8p)=-156 | | 7(2+8a)+8a=462 | | -4(6x+6)=168 | | 25.8744*x=1477.68 | | 4+3k+3k=-8 | | -n-4-n=-10 | | 2x²+12x+10=0 | | (6m-7)=(3m+9) | | -2p+3p=1 | | 4x²+12x+10=0 | | x+.1x=225 | | ∑7k=1(2−3k) |

Equations solver categories