56=(4x+6)(x-4)

Simple and best practice solution for 56=(4x+6)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56=(4x+6)(x-4) equation:



56=(4x+6)(x-4)
We move all terms to the left:
56-((4x+6)(x-4))=0
We multiply parentheses ..
-((+4x^2-16x+6x-24))+56=0
We calculate terms in parentheses: -((+4x^2-16x+6x-24)), so:
(+4x^2-16x+6x-24)
We get rid of parentheses
4x^2-16x+6x-24
We add all the numbers together, and all the variables
4x^2-10x-24
Back to the equation:
-(4x^2-10x-24)
We get rid of parentheses
-4x^2+10x+24+56=0
We add all the numbers together, and all the variables
-4x^2+10x+80=0
a = -4; b = 10; c = +80;
Δ = b2-4ac
Δ = 102-4·(-4)·80
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{345}}{2*-4}=\frac{-10-2\sqrt{345}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{345}}{2*-4}=\frac{-10+2\sqrt{345}}{-8} $

See similar equations:

| a÷6=7a= | | 2=8x10+4(5x6)+74x3 | | 2/5=x/3.5 | | -(5x-5+5=20 | | 7(x=5)= | | y÷2-9y=18. | | 4x2-12x+9=4 | | 6c-9c=-6-21 | | v-32=64 | | -8x+-15=25 | | 2j-6=1+3j | | 3(–3)+8x=5(2x+1) | | 4y+5=3(y+1) | | 55+30=x | | v/7=8/3 | | 4/5=x/6.5 | | -37-8=9m+6m | | c+7/7=3 | | -37-8=9m+6 | | 2/5x-4=-2/5x+4 | | 19+p=19 | | -4r-19=2r-7 | | 13+-4x=-11 | | 11b+15=4b+22 | | 35+14x=609 | | u+17=62 | | x/9•x/32=15/4 | | 9m+7=8m+1 | | 0.50c=127.50 | | 2x(4x+9)=0 | | 9x=2/3x-1 | | 10(m-1)=20 |

Equations solver categories