56p*56p+8=67

Simple and best practice solution for 56p*56p+8=67 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56p*56p+8=67 equation:



56p*56p+8=67
We move all terms to the left:
56p*56p+8-(67)=0
We add all the numbers together, and all the variables
56p*56p-59=0
Wy multiply elements
3136p^2-59=0
a = 3136; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·3136·(-59)
Δ = 740096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{740096}=\sqrt{12544*59}=\sqrt{12544}*\sqrt{59}=112\sqrt{59}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112\sqrt{59}}{2*3136}=\frac{0-112\sqrt{59}}{6272} =-\frac{112\sqrt{59}}{6272} =-\frac{\sqrt{59}}{56} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112\sqrt{59}}{2*3136}=\frac{0+112\sqrt{59}}{6272} =\frac{112\sqrt{59}}{6272} =\frac{\sqrt{59}}{56} $

See similar equations:

| Z^4+10z^2+9=0 | | (y+1/16)(y+2/3)=0 | | 13-6n=1 | | y^2+2/3y+1/16y+1/24=0 | | 27x2-81x+144=0 | | -3(X)=6-7x | | f(-3)=6-7(-3) | | 9x-3x=15 | | 7x+123(12x-7)-45=5x(4x+8+9)-2x(5+10) | | 9x-7=(-)7x-14 | | 4y+15=7y-11 | | 2(3x+9)=15 | | v+3=120 | | 2x+(x+64)=180 | | x-2+x-3=1 | | 548-d=216 | | 5+3x=76 | | 5-c=47 | | 9k-3k=15 | | x+2/6-(11-x/13-1/4)=3x-4/12 | | 2/7(x-9)+x/3=3 | | y-1/3-y-2/4=1+3y-2/5 | | n+8+56-20=40 | | y+7/3=13y-2/5 | | 9x-8x+7=8-3 | | (6a)a=3 | | (3x-2)-9x=4(1-3x) | | -2x-4x-6=3x-6+35+15x | | √x+4x+5=(x+2)(x+7) | | -2x-2(2x-3)=3(x+2) | | 1.8*x=2.6 | | 3(2x+4)+3(3x+1)=38 |

Equations solver categories