If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2-8x=0
a = 56; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·56·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*56}=\frac{0}{112} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*56}=\frac{16}{112} =1/7 $
| 5x+10+2x+1=90 | | -x+6=2x-11 | | 30x=12x | | 8^t=9 | | (-7)=e/3+14e= | | 5000000=5000+7x | | 2.x+18=32 | | (X-8)x3=2X-14 | | 4=(-8)+3xx= | | 6(x-0.1)+(3-2)=10.9 | | -2y-8=10 | | l=8000.6=1 | | l=8000.61 | | x-0.15x=480 | | 2x2=3-8x | | 2x=-0.49 | | Y=4/x^2+2 | | 18+16x-12=-4x(2-x)+9x | | 25x=100(34;6) | | 20x=48/11 | | 18+6x-12=-4x(2-x)+9x | | 1/3t=-8 | | 270/15=x/40 | | X÷3+x÷4=42 | | 1/3x=6/5 | | z/10+1=3 | | 2x+20=5x+16 | | X+0.12x=34,500 | | 4x-14x+10x=-12+5-6-7 | | 3h²-147=169 | | 3h²-147=16ô | | 4-6x=11x+3 |