If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56y^2-29y+3=0
a = 56; b = -29; c = +3;
Δ = b2-4ac
Δ = -292-4·56·3
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-13}{2*56}=\frac{16}{112} =1/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+13}{2*56}=\frac{42}{112} =3/8 $
| 56y-29y+3=0 | | 10x2-101x+136=0 | | (x+2)*(x-3)=100 | | 28a=4a | | 3y2-10y+7=0 | | 7x2+62x-9=0 | | 3x(x-4)/x-0=0 | | 2x^2+x-312=0 | | 65=u+59 | | q+26=32 | | 83=s+95 | | 12v=81+3v | | 1/2r+4=r+10 | | 25=10y+6 | | 18x-2=308 | | 2x+44=6x+8 | | y^2+4y-70=0 | | 0.0000175=x^2+0.0000175x | | n+77=476 | | b-356=335 | | 18=s/21 | | y+336=863 | | w/21=18 | | v-102=373 | | g+18=45 | | k+23=100 | | 3x-2=x5 | | X+11=x-20=9 | | 8x-30=4x+60 | | 2x-10=1.5x | | 2x+10=1.5x | | (40-1.50)x=(9+1.50)x |