58000/20(x)+10(x)+10+2000=3731

Simple and best practice solution for 58000/20(x)+10(x)+10+2000=3731 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 58000/20(x)+10(x)+10+2000=3731 equation:



58000/20(x)+10(x)+10+2000=3731
We move all terms to the left:
58000/20(x)+10(x)+10+2000-(3731)=0
Domain of the equation: 20x!=0
x!=0/20
x!=0
x∈R
We add all the numbers together, and all the variables
10x+58000/20x-1721=0
We multiply all the terms by the denominator
10x*20x-1721*20x+58000=0
Wy multiply elements
200x^2-34420x+58000=0
a = 200; b = -34420; c = +58000;
Δ = b2-4ac
Δ = -344202-4·200·58000
Δ = 1138336400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1138336400}=\sqrt{400*2845841}=\sqrt{400}*\sqrt{2845841}=20\sqrt{2845841}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34420)-20\sqrt{2845841}}{2*200}=\frac{34420-20\sqrt{2845841}}{400} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34420)+20\sqrt{2845841}}{2*200}=\frac{34420+20\sqrt{2845841}}{400} $

See similar equations:

| -3(-6x+8)-4x=5(x-6)-9 | | 5(m+3)=2(m+3) | | 7+(2x-1)=4x | | 10(n-2)/5=14 | | 59.70=m | | 7=y/2-8 | | (5x+6)=(8x-1) | | 2/x-3=9/4 | | 8(2t+1)-11=t-(t+2) | | 10x+40=5x+8 | | n=7(2)+4 | | 14d-1/3(15-9d)=148 | | n=7(7)+4 | | 59=-8x+3 | | f=(9/5*40)+32 | | 5x+6=8x-1 | | 8(y-4)+2(y+2)=62 | | 5p-10=05p | | 7+3(x-5)=11 | | 6x-8=-3(3x-8) | | n=7-1+4 | | m+15=-25 | | 5p10=0 | | x+36=-83 | | 20.45=4g+3.97 | | 1/4-4=7/4a-3 | | n=7-8+4 | | f=(9/5*30)+32 | | 4x+8=2x+ | | 0.5x+5=17 | | z+13= 1 | | f=4-8-2 |

Equations solver categories