If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=-16t^2+1700
We move all terms to the left:
5-(-16t^2+1700)=0
We get rid of parentheses
16t^2-1700+5=0
We add all the numbers together, and all the variables
16t^2-1695=0
a = 16; b = 0; c = -1695;
Δ = b2-4ac
Δ = 02-4·16·(-1695)
Δ = 108480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108480}=\sqrt{64*1695}=\sqrt{64}*\sqrt{1695}=8\sqrt{1695}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1695}}{2*16}=\frac{0-8\sqrt{1695}}{32} =-\frac{8\sqrt{1695}}{32} =-\frac{\sqrt{1695}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1695}}{2*16}=\frac{0+8\sqrt{1695}}{32} =\frac{8\sqrt{1695}}{32} =\frac{\sqrt{1695}}{4} $
| 3+4-2x+5)=-6+3 | | 4n–7=9 | | 6m+3m+2=-2m-7+m | | 6s=360 | | 8(1-3b)+1=-3-4(2b-3) | | 0=-y-6 | | -a-5/4(-8/3(a)+1=-19/4 | | (x+1)-7(x+9)=4x | | 24-u=18 | | |4m+9|=3 | | 9=x-4x | | 4(11-5y/3)=22 | | 2x-45+23=180 | | 8a+7=8a+7 | | x16.15=24.35 | | 5-8x-4x=5 | | 0.3x+0.5(10)=0.2(x+10) | | 20=f+5 | | 4(x-4)-(4x+4)=6(2x+2) | | 14x-9=13x | | 1-8n-8n=1-8n | | 7x-18x+42=119 | | -7=x+6-6 | | 12(3x+4)=42x+12 | | Px3.4=7.48 | | y+7=1/2(×+2) | | 5-3r=-3(r-7) | | 2(x-3)+5x=12+7x-18 | | 24r+15=1000 | | 9x=7(x-10) | | 4.5=0.7x | | -4r-3-4r=21 |