If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=20-x-x(20-x)/x
We move all terms to the left:
5-(20-x-x(20-x)/x)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(20-x-x(-1x+20)/x)+5=0
We multiply all the terms by the denominator
-(20-x-x(-1x+20)+5*x)=0
We calculate terms in parentheses: -(20-x-x(-1x+20)+5*x), so:We get rid of parentheses
20-x-x(-1x+20)+5*x
determiningTheFunctionDomain -x-x(-1x+20)+5*x+20
We add all the numbers together, and all the variables
4x-x(-1x+20)+20
We multiply parentheses
1x^2+4x-20x+20
We add all the numbers together, and all the variables
x^2-16x+20
Back to the equation:
-(x^2-16x+20)
-x^2+16x-20=0
We add all the numbers together, and all the variables
-1x^2+16x-20=0
a = -1; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·(-1)·(-20)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{11}}{2*-1}=\frac{-16-4\sqrt{11}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{11}}{2*-1}=\frac{-16+4\sqrt{11}}{-2} $
| 23-4z=3(z-4) | | 16.4+2y=8y+2 | | X⁴-4x²=0 | | 2w+-9=9w+19 | | 300=40x-x^2 | | 6v+13=3v+34 | | 4u+22=7u-8 | | 12=3(h-2) | | 5x-4x=2-3 | | −7x−4−2=8 | | 20=52-4f | | 7(6y+2)=−8 | | 42y+14=-8 | | 3c-2(3-2c)=3c-4c=-1c | | 6(x+8)=4(x-7) | | 3b+5(2b+9)-19=0 | | x+24=450 | | z/8-8=12 | | x-24=450 | | 16a-8(3a+4)=-4(a-5)+12(3a-9) | | -12(x-5)=3(x+0) | | s*6+40=190 | | 66-x^2+x=10 | | 3000=x+x÷4+x-150 | | 5-3x=-6(x=2) | | 39=18-5x | | y+3/7=1/5 | | 5x-3=2x-2/3 | | 9(8b+23)=299 | | 5(6x+21)=25 | | 5x-77=6x | | x-x/x+1=x/x+1 |