If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=z2
We move all terms to the left:
5-(z2)=0
We add all the numbers together, and all the variables
-1z^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $
| -9-s=1 | | 3/5x=15/1 | | 350=Xx.20 | | 22x=110° | | q/4-16=-18 | | 3.4x+.2=4.1 | | m=3.7=2.4 | | t/3+6=5 | | 4×+5y=8 | | x/3-11=44 | | 18=12+q | | 34c=-136 | | 2h–3=7 | | 4c-+3=15-2c | | -16=4t | | x+132=125° | | 11x+10=6x⋅0 | | 9x+4+4x+1=81 | | 105=n3 | | 123=200+x | | y=400(1+0.29)^6 | | -3m-11+5m=-18 | | 4(2a)=32a | | –4s+–s−–18s+9s+6=–16 | | 11x+10=6x0 | | 13x+7=9x+39 | | 4(2a)=8a | | 2v+3v-v+2v-3=15 | | y=30,000(1+0.05)^15 | | 8(4y-1)=56 | | 17u+3u-5u-11u-u=3 | | 17=u−6 |