5a(a+80)+(2a+200)=360

Simple and best practice solution for 5a(a+80)+(2a+200)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5a(a+80)+(2a+200)=360 equation:



5a(a+80)+(2a+200)=360
We move all terms to the left:
5a(a+80)+(2a+200)-(360)=0
We multiply parentheses
5a^2+400a+(2a+200)-360=0
We get rid of parentheses
5a^2+400a+2a+200-360=0
We add all the numbers together, and all the variables
5a^2+402a-160=0
a = 5; b = 402; c = -160;
Δ = b2-4ac
Δ = 4022-4·5·(-160)
Δ = 164804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164804}=\sqrt{4*41201}=\sqrt{4}*\sqrt{41201}=2\sqrt{41201}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(402)-2\sqrt{41201}}{2*5}=\frac{-402-2\sqrt{41201}}{10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(402)+2\sqrt{41201}}{2*5}=\frac{-402+2\sqrt{41201}}{10} $

See similar equations:

| x÷2-10=1/2 | | X+x+6+x-4=32 | | 5x+12=2x+87 | | 2xx2x=50 | | 3x+40=5x-8 | | 9+4x=-16 | | 6x-4×(x+13)=44 | | 10p-5-3p=22 | | 10p-5-5p=22 | | 6+6x=-4x+x | | x–1=2x+7 | | 15=2x7 | | 4x-3÷2=9x-6÷8+11÷4 | | 5y+8=3y-1 | | 2x+8=27-5 | | 3x/2+6=21 | | 11x+30=3x+158 | | -8x5x=0 | | 2(a+3)+1=2a+7 | | 8-x-4=5x | | 17+6p=6 | | 2=6f+8 | | 10n+3=7n+15 | | 3+4x=8x+1 | | 7x-2=8-9x | | 5x+10=12x+10 | | 1.162.261.467(5)=3n-1 | | 8y-8=2y+10 | | 3x+10=26-6x | | w(w+1)=100 | | 3^2÷8=6x | | 12+x/3-3=11 |

Equations solver categories