5a(a-2)=8(3a-4)

Simple and best practice solution for 5a(a-2)=8(3a-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5a(a-2)=8(3a-4) equation:



5a(a-2)=8(3a-4)
We move all terms to the left:
5a(a-2)-(8(3a-4))=0
We multiply parentheses
5a^2-10a-(8(3a-4))=0
We calculate terms in parentheses: -(8(3a-4)), so:
8(3a-4)
We multiply parentheses
24a-32
Back to the equation:
-(24a-32)
We get rid of parentheses
5a^2-10a-24a+32=0
We add all the numbers together, and all the variables
5a^2-34a+32=0
a = 5; b = -34; c = +32;
Δ = b2-4ac
Δ = -342-4·5·32
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{129}}{2*5}=\frac{34-2\sqrt{129}}{10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{129}}{2*5}=\frac{34+2\sqrt{129}}{10} $

See similar equations:

| 4c+6=22 | | 5a(a-2)=8(3a-4a) | | 3x+2+4x=23-4x+4x | | 9n-9÷3=150 | | 3x+2=23-4x+4x | | 224y=72 | | 5n+30=360 | | 8x+74/5=10 | | 32m+4=1m+2-2 | | 7x+4=32+x | | 2. V=A.h/3 | | 2. V=A.h3 | | x/6=−5 | | 5^2x=25^3x-2 | | 20-x=-2-8 | | 6g=38 | | 2x-14=55 | | 4(2x-3)=-2-3x2-8) | | 9^(x-4)=7^(-3x) | | 4y²+5y-2=0 | | 15=x-49 | | 5/x-7=x+7/3 | | 8x-64=16x-128 | | 3x^2-3-6x=-4+2x^2+2x | | x²+2x+1=0x²=2+x6x²-10x+4=0 | | (5x+1)=99 | | +5x-20=+5 | | +5x-20=5 | | 4(2x+2)=15+x | | 2(3+x)=12-4x | | x=10x4030 | | 3(2x-1)=-5-4× |

Equations solver categories