If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-7a-90=0
a = 5; b = -7; c = -90;
Δ = b2-4ac
Δ = -72-4·5·(-90)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-43}{2*5}=\frac{-36}{10} =-3+3/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+43}{2*5}=\frac{50}{10} =5 $
| -4x+5=-2x-9 | | 2x-9-1=-5 | | 4b=-6+5b | | 3x+51= | | 2x-9-1=5 | | 6(-7+3x)=138 | | 15x-6x=9x | | 3(y+4)=3+6y | | 5x-2=(3x-6)+(4x-2) | | 8g+4.5=36.3 | | 6+3r=4r | | 5p-2=9p-10 | | 3(n+1)=33 | | 2(b+9)=9b+18-7b | | 2x-9-1=-4 | | (4x+1)=13x-7 | | 7x+5x=10x | | 8−2b=3−b | | -6+4m=9-5+5m | | 124=7x-9 | | 4/5x+5=2x-3/4 | | 2x-91=-5 | | -10(11k-6)=-12(2-8k) | | (4x+3)+(2x7)=8 | | 2x−9−1=5 | | 17y-4(3y-6)=5y+32 | | 3g+13=g-5+2g | | -8u+6(u+4)=34 | | 4x-7(x-9)=45 | | 3x-4(-8x+1)=9x+11 | | 62.5=2x | | -10+4z=6+2z |