If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2-45=0
a = 5; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·5·(-45)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*5}=\frac{-30}{10} =-3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*5}=\frac{30}{10} =3 $
| 3x+1+1=20 | | 7(x+9)+8=71 | | 3x=73-1 | | 0=-2√3x=2 | | 6x+7+55=180 | | 5x2−35x=0 | | 4/5-x/20=2x+16/40 | | -3/4x+1/2=3/8 | | 8c+5c-12c=10 | | -16^2+62t+24=0 | | 12c-9=27 | | z^2=+7z=-10 | | 2+4v=2 | | 3x=17(x+1)/6 | | 3u+2u-2u+2=20 | | -9x+1=–x+17x=–8x=–2x=2x=8 | | –9x+1=–x+17x=–8x=–2x=2x=8 | | 3^(2x)-30*3^x+81=0 | | -26x=-13 | | -3x+1+10x=x+4x=x=x=12x=18 | | 16x+11+57=180 | | 32x-30*3x+81=0 | | 3.3x-10.46=6.7 | | 3x+2*3=13 | | 3x+2*3=14 | | y=3(1/4)^1 | | 2(x+5)=1/2x(x-4) | | 2/p2-2p=3/p2-p | | t(3t-1)(4t+5)=0 | | y=-(4^2) | | 5(y^2-3y+4)^2=0 | | Y=-(4^x) |