If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2+25c=0
a = 5; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·5·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*5}=\frac{-50}{10} =-5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*5}=\frac{0}{10} =0 $
| a2+9a=0 | | 12(n-3)=4(n+1 | | 3x+2+0=3x+2+1 | | (5s+3)(2-s)=0 | | -12v-7+9v=26 | | (p+1)(p+2)=0 | | w-4/3+5=6 | | n^2-5n-300=0 | | 4(t-8)=3+6+2 | | 4(t-8)=6+2 | | -7(4x+5)=30 | | 3x+2x+1=5 | | s(s+12)=21 | | 20x^2+48x-19=0 | | 20x^2+48x+19=0 | | 3x-11=15+x | | 7−a=5 | | x^2+250x-375000=0 | | 10x+4=9x+4 | | 4x-9=2x-7 | | 130=58+r | | 345-n=76+67 | | n/3+7=53 | | n +7=53 | | 54+t=132 | | 15+-2x=x | | y(2y-3)=1 | | a3=-2 | | 3s+2=5s-6 | | 10x-6x-7-4x=5 | | 3x+11x+3=6x+2x+3 | | 0=0.5x^2-3 |