5d+34=-2(1-7d)d

Simple and best practice solution for 5d+34=-2(1-7d)d equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5d+34=-2(1-7d)d equation:



5d+34=-2(1-7d)d
We move all terms to the left:
5d+34-(-2(1-7d)d)=0
We add all the numbers together, and all the variables
5d-(-2(-7d+1)d)+34=0
We calculate terms in parentheses: -(-2(-7d+1)d), so:
-2(-7d+1)d
We multiply parentheses
14d^2-2d
Back to the equation:
-(14d^2-2d)
We get rid of parentheses
-14d^2+5d+2d+34=0
We add all the numbers together, and all the variables
-14d^2+7d+34=0
a = -14; b = 7; c = +34;
Δ = b2-4ac
Δ = 72-4·(-14)·34
Δ = 1953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1953}=\sqrt{9*217}=\sqrt{9}*\sqrt{217}=3\sqrt{217}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{217}}{2*-14}=\frac{-7-3\sqrt{217}}{-28} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{217}}{2*-14}=\frac{-7+3\sqrt{217}}{-28} $

See similar equations:

| 5d+34=-2(1-7d); | | |w|+8=17 | | 5d+34=-2(1-7d);d | | 2x^2-12x=-50 | | b/2=4b-7 | | 6=1-2a+5;a | | 32=2+5u | | 6=1-2a+5;a= | | 4/5=14/x | | -3/a=2 | | -16+9m=6556 | | 1/2-5d=3/2 | | -8x2+46x-30=0 | | -2q-5=`11 | | 2/5=7+1/3h | | 4y=38–2y+8 | | 2/3x+x/6=5 | | 0.25(w-4.3=4 | | x-(-2)=17 | | 9/2-12x=1/4 | | 2.3x2-15x-(31/10)=0 | | 2,3x2-15x-(31/10)=0 | | 4(3t-2)=888 | | (3x-7)(5x+3)=0 | | 3x-1=11+2x | | 4/3=2/3(x+7/3) | | X-(4x-7)=5x(x-21) | | 5x+6+49+27=180 | | 5x-7=- | | 2|3x-10|=5x+15 | | 5x+6+49=180 | | -2=-1n(n-8) |

Equations solver categories