If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5d^2-22d+8=0
a = 5; b = -22; c = +8;
Δ = b2-4ac
Δ = -222-4·5·8
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-18}{2*5}=\frac{4}{10} =2/5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+18}{2*5}=\frac{40}{10} =4 $
| (f-32)/9=23/5 | | y-6=-0.2 | | 159=4(6w-9) | | 3(8+n)-15=25 | | 3(y)-8=2(y)-17 | | 5q=3q+2q | | 4x+2x+30=40/2 | | 28=13x | | 3(x)-8=2(x)-17 | | 44=x/3+16 | | 3x+1=27 | | 5=z-3/9 | | 3x+4=x+x+ | | 4x-3=2-1 | | 3(x+1)=24 | | 5u-11=79 | | 2x+3(x-4)=21 | | 5u-11=7 | | (x)+16+2(x)-16=180 | | -6n-2=10 | | x2+22x=−40 | | -12x+48=-2(-10x-4) | | 8n-14=45 | | 6(x)-23=3(x)-5 | | 16+x2-8=0 | | 2(a=4)=38 | | (5+k)^2=81 | | (5+k)^(2)=81 | | x/2+45=4x | | (x+42)+x=90 | | 1/2(5x-4)+5x-2=2.5x | | 21=x/3-13 |