If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k(2k-1)=0
We multiply parentheses
10k^2-5k=0
a = 10; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*10}=\frac{0}{20} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*10}=\frac{10}{20} =1/2 $
| 10-7r=-9r-10 | | 8t=-9+7t | | 4w-26=8 | | 2p-6p=-12 | | -5y+4+6y=10+2y | | X+x+0.45+x0.45+0.98=11.26 | | -n-8=10 | | 7-8g=-7-5g+2 | | 6(y+6)+3=93 | | -6+3t=4+4t | | -15(7x+14)=12x-6 | | 1.4(7-n)=12 | | 13+20x=5(4x+4) | | x^2−4x+53=0 | | 3+2(4+2x)+1=20-2(2-x | | -9(16x-2)=-18x-13 | | .A=1/2h | | 5(2s-4)+13=4(s-3)-(2s+3) | | 4p-4=-(p-4)+4p | | 1=9p+5-8p | | -11(-8x-1)=19x-20 | | 4(4x+7)=15-2(x+2) | | 11(19x-12)=17x-7 | | -8x6=0 | | X^6+35=12x | | |2n-2|+16=5 | | 19m/5-4/5=1.4-m/5 | | (2x-3)/(5x+7)=0 | | 3t^2-42t+144=0 | | G(t)=8-0.5(t) | | (2x+9)(4x+2)=(8x+3)(x−4) | | -4b+8=3b+15 |