5k+7=3/8k+81

Simple and best practice solution for 5k+7=3/8k+81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5k+7=3/8k+81 equation:



5k+7=3/8k+81
We move all terms to the left:
5k+7-(3/8k+81)=0
Domain of the equation: 8k+81)!=0
k∈R
We get rid of parentheses
5k-3/8k-81+7=0
We multiply all the terms by the denominator
5k*8k-81*8k+7*8k-3=0
Wy multiply elements
40k^2-648k+56k-3=0
We add all the numbers together, and all the variables
40k^2-592k-3=0
a = 40; b = -592; c = -3;
Δ = b2-4ac
Δ = -5922-4·40·(-3)
Δ = 350944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{350944}=\sqrt{16*21934}=\sqrt{16}*\sqrt{21934}=4\sqrt{21934}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-592)-4\sqrt{21934}}{2*40}=\frac{592-4\sqrt{21934}}{80} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-592)+4\sqrt{21934}}{2*40}=\frac{592+4\sqrt{21934}}{80} $

See similar equations:

| −y/9+41=42 | | 3(f-5=7 | | -1/2x+-2=14 | | 2x-3(x+1)=5x-4 | | 8w=48+3w | | 4c+22=46 | | 2x²-15+25=0 | | 49=  ∣7c∣ | | 3(p+45)=5 | | -2x=-13-7 | | 4(4^x)=16 | | 4=-x+223 | | F(y)=3y+2÷3y-2 | | X+2x(2+7x)=42 | | 2x²+10x+53=0 | | X2+205=10x | | 20=(6x3) | | 8y-4y-14+9=0 | | 80=111+x | | 46+9x=12x+28 | | 12x+28=47+9x | | 9x=12x-33 | | -1x+4=0.5(-2x+8) | | 11=h/8 | | X=17y= | | -4/9m=9 | | T(n)=9 | | 5x-(5x-6)×4=6 | | 4x—2=12 | | 5+7t=9t+1 | | 5t=-18+3t | | 7(5+t)-3=53 |

Equations solver categories