If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m(4m+8)=0
We multiply parentheses
20m^2+40m=0
a = 20; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·20·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*20}=\frac{-80}{40} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*20}=\frac{0}{40} =0 $
| 3x-3+120=180 | | (d-1)^2=-18 | | 6x+8=8+-12 | | 4x(-5)=48 | | 8k^2=288 | | 8(x-5)-5(3x-5)=2-2x+8 | | x+44+55=180 | | 6w+3/7=6 | | 6w=4w | | p(7p+6)=0 | | 2x2=27+3x | | -5n+3n=4(n+2)-2(n-2) | | 17=9f-6f | | 192=-6-6(4m-5) | | (x+(x+2))•x=12 | | 5t+3t=5-3(t+5) | | 75=4x-3(4x-1) | | 138=9x-4+(12x+8-180) | | 4x-2+6x+20+2x+18=180 | | 2^(3x-3)=64 | | 2^3x-3=6 | | 3x−5=9x+8 | | 5n^2-49n+72=0 | | 20+2x=(6x)-180 | | 3x/4-1/1=2x/5 | | 2x+174+54+x=360 | | 6x=10x-20 | | 120=1/2(3x) | | 7a^2+48a+36=0 | | 75=1/2(x+5x) | | 11(z+10)+10=2z-10 | | 45/a=2.5 |