If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2+20m=0
a = 5; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·5·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*5}=\frac{-40}{10} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*5}=\frac{0}{10} =0 $
| 0.09x=-2.75 | | 2(m+6)+4m=18 | | 141+127=8y | | 9x2+11x-5=-4x2 | | 187=125-x | | -58-6x+13x=47 | | 2m-8=29 | | 19x^2+10x=90 | | 7x-3(2x-1)=x-7 | | 7x-6x-3=x-7 | | 7/3m=4 | | 7/3m=14 | | x-0.7x=60 | | -3x-4(4-8)=3(-8x-1) | | 3/7m=14 | | −58−6x+13x=47−58−6x+13x=47 | | 4*x=-20/9 | | 2(5x-39)=4x-18 | | 9k=4k-20 | | -3-2x=x-1 | | (5x-8)/3=(4x-7)/2 | | 2d2-19d+14=-6d | | 6=10^1/x | | 0.3x=25 | | 15x+10x-5=30 | | 8x-0.7=4.9 | | 4x+1=-3/5 | | P=6p+11 | | -24+Y2+2y=0 | | 4.9t^2-9.8t-39.2=0 | | z+10/4=5 | | 10y+3y-4=0 |