If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2-20=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| -w-5=12 | | 3x+23=13-97 | | 3(x-9)=-21. | | 3x+20+5x+10=180 | | x=7=−13 | | 2(-2x+3)-5(2-x)=3(2x+3) | | 8/11=x3 | | m2+64=0 | | 7-2(-x-3)=8-5(x-1) | | 2z-6=5z+8 | | xx−2=−8 | | (D2+4.00D+3.36I)y=0 | | xx+10=−3 | | n×2×25+4=15 | | 4x^2-1=14 | | 0,5n+4=10 | | 9x²=81 | | 3(m+4)−2(4m+1=) | | 3•x+24=45 | | x•3/4=-15 | | (8/125)^2=(25/4)^x | | 0.5x-4=11 | | 6(x-6)=2(x+14) | | 6(x+-6)=2(x+14) | | 8x=20+x | | 5+2c=12 | | 6x+35=-6-35 | | (60-x)-6=5 | | ((150-y)*160)+(y*120)=20000 | | 4{a+3}=12 | | 3c+8=c+2 | | 6p+4=p+9 |