If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n(8n+1)=0
We multiply parentheses
40n^2+5n=0
a = 40; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·40·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*40}=\frac{-10}{80} =-1/8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*40}=\frac{0}{80} =0 $
| x⁴-6x²+8=0 | | 567x-27-566+64-37=33 | | 641=x+365 | | 5=2+x/4 | | 0=3x^2-14x-40 | | e-19=20 | | (x-8)+(x-8)=0 | | p+27=35 | | g+42=103 | | 7(x+4)=5x+12 | | 28x/2=42 | | 6x+12=15-3x | | 3x-2(6x+3)=42 | | x+3/x+1=3-x/4-x | | 19-12-4x=15-6x | | 8w=5760w | | y-2.79=4.7 | | -5t^2+100t-150=0 | | 19x=13(x+1) | | -t^2+20t-30=0 | | -43.5=25y-15.5+y | | 2a+3÷5=a+8÷4 | | 5m^2-35m+50=0 | | 2^x=8^5x | | X^2+7x=x+7 | | 3(2a+1)=4 | | f(-3)=3(-3)-3 | | f(-3)=2/3(-3)-3 | | x²+2x-3=x²+x-20 | | 15/4-7x=19 | | x²+2x-3=x²+1x-20 | | 5x+8÷7=6 |