If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n+2=n2
We move all terms to the left:
5n+2-(n2)=0
We add all the numbers together, and all the variables
-1n^2+5n+2=0
a = -1; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·(-1)·2
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{33}}{2*-1}=\frac{-5-\sqrt{33}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{33}}{2*-1}=\frac{-5+\sqrt{33}}{-2} $
| 4(x+10)-4=85-3x | | 7w^2–7w+9=0 | | 65+3x=335 | | 0.6(x+6)=-2 | | 4x+220=308|-220 | | x÷5-26=-15 | | 0.9/3.6=1.2/b | | 8m-4=3+7m* | | 56°=(7x-8)° | | f-12=4 | | x8−12+3x=34 | | 4b+10=38 | | 70=s−–50 | | 4(2y+1)=3y+9 | | 3x-2x+15=3x-10+15 | | 4(x+3)^2=28 | | 2x-4(x-4)=-6+2x-6 | | 11p^2-17p−20= p2 | | j-8=30 | | 50=n+30 | | k+7=22 | | 11=x17 | | 93=j-27 | | −3c +5=7 | | 70=b+40 | | 7+6+7y=30 | | 24=14+n | | x−(−2)=−8 | | 8x-6=78+5x | | 5/8=k/16 | | 6(6+3x=144 | | p–18=35 |