If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+10n-5=0
a = 5; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·5·(-5)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{2}}{2*5}=\frac{-10-10\sqrt{2}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{2}}{2*5}=\frac{-10+10\sqrt{2}}{10} $
| 0=70-16t^2 | | -x+1/55x=41/5 | | x-14=6-3(x-4 | | −9x+1=−1x+25 | | 7x+3+6x9=12x+5 | | 9x−18=198 | | 3.96x+35.64=71.28 | | 2(3x–1)=–6x–2 | | 14x-3=4x+1 | | z+55=90 | | -7(4-6x)=-28+2x | | 4−6x)=16 | | 12+5w=4w=15 | | 12+52-4w=15 | | p+30+80=90 | | 3t=-8.16t | | p+30+80=180 | | 8(3a+6)=9(2-4) | | .75x−x)=21 | | 8(3a+6)=9(2@-4) | | 2(x-6)=3x(x+6) | | (8+h)/10=1 | | -0.5x+12=2x+27 | | 20+x=6 | | 5u/7=10 | | 7.7x+2025=59.29+45x | | 1/2(2x+6)=2x+13 | | 2x^-3x=25 | | 0.69x+35=1.19 | | 0.69x+42 = 1.39x | | 14y-43=4y=65 | | 5(x+3)-4x+7=-5 |