If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+40n=0
a = 5; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·5·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*5}=\frac{-80}{10} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*5}=\frac{0}{10} =0 $
| 26/t-10=7 | | 2x+2x+5+12+8=180 | | 2x+2x+5+12+8=1800 | | 2x+2x+5+12+8=360 | | 115-10k=105 | | 898-f=897 | | 65-m=6 | | 20/z+319=332 | | √3p+13=p+3 | | -7−8s=-5s+8 | | x+40-180=3x | | 62+17r=946 | | 3g-36=39 | | 25/b-3=7 | | 278-u=65 | | 6q-19=71 | | 7+11x=x+16 | | 93-m=37 | | 13=48-u | | 3/d+16=22 | | 10/z-10=1 | | 900/u=30 | | 24=100-q | | 5*10^(x-2)=83 | | 19=45-k | | 5j-7=17 | | _x_=296 | | 17/j-4=7 | | -4+4x=-8=14x | | 17j-4=7 | | 8x-16=3x-2x, | | 18(g+13)=592 |