If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+5n=0
a = 5; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·5·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*5}=\frac{-10}{10} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*5}=\frac{0}{10} =0 $
| 1=4x+0.50 | | 6(x+4)-2(1-2x)=0 | | 7x-25=80 | | 7x-30=90 | | -4x-46=5×+71 | | -2m=0-5 | | 42x2−x−30=0 | | 6x2-2x-6=0 | | 9p=63# | | 9^1-x=27^x-1 | | -38=2(2x-4)+10 | | 3x-4x+11=4+-4x6x | | 4^x+1=2^x | | 2(3x-2)=5x-6 | | 3(3x-2)=-15 | | 27^1-x=3 | | 2(2x-2)=x-13 | | 4x+28=5(3x-1) | | 4x3=108 | | -3x+30=3(3x-2) | | -4x+33=x-32 | | 5x+3=10x-17x | | -36=2(5x-1)+6 | | 5x-19=-4x+44 | | 3^x=27^2-3x | | 36^x-3=216 | | 5^5x-2=125 | | 9^2x=27 | | 2(6-3x)=(1+2x)/3 | | 5+x2=32-2x2 | | x+5(x-12)=90 | | 0=29.626+2a(1.5) |